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Abstract: In cement mills, ventilation is a critical key for maintaining temperature and material
transportation. However, relationships between operational variables and ventilation factors for an
industrial cement ball mill were not addressed until today. This investigation is going to fill this
gap based on a newly developed concept named “conscious laboratory (CL)”. For constructing the
CL, a boosted neural network (BNN), as a recently developed comprehensive artificial intelligence
model, was applied through over 35 different variables, with more than 2000 records monitored for
an industrial cement ball mill. BNN could assess multivariable nonlinear relationships among this
vast dataset, and indicated mill outlet pressure and the ampere of the separator fan had the highest
rank for the ventilation prediction. BNN could accurately model ventilation factors based on the
operational variables with a root mean square error (RMSE) of 0.6. BNN showed a lower error than
other traditional machine learning models (RMSE: random forest 0.71, support vector regression:
0.76). Since improving the milling efficiency has an essential role in machine development and energy
utilization, these results can open a new window to the optimal designing of comminution units for
the material technologies.

Keywords: cement; ball mill; conscious laboratory; random forest; support vector regression

1. Introduction

In the cement industry, grinding is one of the most consuming energy stages in the
production units. Around 65% of the total used electrical energy in a cement plant has
to be utilized to grind raw materials, coal, and clinker [1,2]. Through the process, many
variables can affect the efficiency and productivity of this dry grinding procedure, such as
the operating conditions of the separators, airflow through the mill, the aperture size of
the mill partitions, feed rate, the hardness of the feed material, and ball sizes in the mill
compartments. Understanding the relationships between these variables from the grinding
units can play an essential role in efficiently operating cement production lines [3–5].

One of the most critical variables in the cement ball mills is ventilation. A mixture of
hot and recycled air would deliver and dry the powder in a cement ball mill as a pulverizing
system. Thus, ventilation in this system can have a significant effect on the production
process. Extensive ventilation can substantially increase the coarse powder, while in the
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small ventilation, the delivered powder decreases (as a result, the output decreases). Only
proper ventilation ensures the max output with qualified powder, and reduces loss [6–8].
The multiphase character of flow made the ventilation controlling an essential factor (where
recirculation gases, pulverized coal, sand, and other materials are included) [6–9]. In detail,
there are many parameters in a cement ball mill that may influence the ventilation. The ball
mill load, the outlet temperature, the hot air pressure, the recycle air pressure, the negative
inlet pressure, the different inlet-outlet pressure, and the outlet pressure of the fine and
coarse separators are just some of those influential variables [6–10]. However, few studies
have explored the possible relationships between operating variables and ventilation for
an industrial ball mill in a cement plant [11,12].

For assessing complex relationships among a wide range of variables monitored
from the industrial plants, constructing advanced artificial intelligence (AI) models based
on the existing data could be a key to better measure the importance of variables. The
development of such reliable models as a new concept recently has been called “conscious-
laboratory (CL)”. Generating a CL by using a robust AI model can reduce cost, save time,
improve the controlling system, and remove scale-up challenges [13,14]. However, few
investigations have used AI models in the cement industry to explore correlations among
operational variables [15,16], and absolutely no study has considered a CL for analyzing
the effect of various operating variables on mill ventilation. This study will introduce a
CL developed by Boosted Neural Network (BNN) as a recently construct AI model to fill
the gap. For the first time, this work addresses the importance and effectiveness of all
monitored variables on the mill ventilation, based on the actual monitored data from line
one of the Ilam cement plant (Ilam, Iran) by a BNN model. The BNN prediction results
were compared to two other traditional advanced AI models (random forest and support
vector regression) for accuracy assessment purposes.

2. Materials and Methods
2.1. Database

To investigate relationships between various measured variables and ventilation rate,
the data were collected from one of the Raw Material ball mill circuits (line 1) of the Ilam
cement plant (Figure 1). This plant has 2 lines for cement production (5300 t/d). The ball
mill has one component, 5.20 m diameter, and 11.20 m length with 240 t/h capacity (made
by PSP Company from Přerov, Czechia). The mill’s rotation speeds are mainly constant
(14 rpm), and there is approximately a fixed one-year period of changing liners. Various
parameters are monitored in this unit (Table 1). Variables were hourly monitored and were
taken into account (when the circuit was stable and balanced). In general, over 2000 records
were used for the modeling. Regularly measuring pressure before and after the mill fan
(PBMF and PAMF, respectively) can be considered as ventilation factors in a mill.
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Table 1. Descriptive statistics of monitored variables in the plant.

Variables Minimum Maximum Mean Std. Deviation

Temperature of exhaust electro filter ◦C 50 260 119.90 12.85
HVP (1) (KV) 7 596 62.90 129.80
HVP (2) (KV) 31 74 67.00 3.60
Electro filter duct pressure (mbar) 1 41 14.33 1.99
Inlet electro filter temperature ◦C 44 173 106.14 7.55
Electro filter damper fan (%) 15 100 98.93 7.49
Electro filter fan (A) 22 89 38.75 3.47
Mill fan duct temperature ◦C 2 115 79.39 7.50
After mill fan pressure (mbar) 4 18 7.52 1.32
Before mill fan (mbar) 39 64 53.88 2.30
Mill fan motor (A) 6 84 62.33 2.48
Mill fan damper (%) 80 100 99.90 1.25
Hot air damper (%) 46 100 57.30 11.82
Separator rotor (rpm) 17 50 22.64 3.92
After separator fan pressure (mbar) 0 109 2.28 2.52
Total feed (ton) 18 230 191.01 17.67
Mix bin feeders (ton) 18 220 180.1 18.95
Damper of separator fan (%) 35 95 51.75 6.79
Before mill fan pressure (mbar) 9 73 14.17 2.48
Separator outlet temperature ◦C 43 112 73.63 7.79
Separator fan (A) 26 180 29.94 3.45
Separator motor (A) 12 1173 119.56 23.49
Airlift blower2 (A) 15 264 170.84 12.05
Airlift blower1 (A) 17 198 172.76 11.18
Buck elevator motor2 (A) 40 87 54.54 3.15
Buck elevator motor1 (A) 42 72 53.88 4.00
Main motor2 (A) 23 841 241.36 20.50
Main motor1 (A) 205 2369 241.39 47.23
Mill outlet pressure (mbar) 24 369 35.63 7.85
Mill inlet pressure (mbar) 2 14 9.59 0.96
Main gearbox2 temperature ◦C 12 60 35.79 6.63
Main gearbox1 temperature ◦C 14 56 40.90 5.97
Outlet bearing temperature ◦C 30 64 51.37 5.52
Inlet bearing temperature ◦C 28 59 44.80 4.85
Mill outlet temperature ◦C 41 124 80.29 7.30
Mill inlet temperature ◦C 69 498 281.90 22.48
Circulating load (ton) 4 468 143.03 64.47

2.2. AI Models
2.2.1. Boosted Neural Network

As a powerful artificial intelligence (AI) model, Boosted Neural Network (BNN) was
constructed using neural network experts and ensemble algorithm. BNN promotes the
probability of sampling data for training experts in predictive functions. It improves the
verification of balance through the training dataset by conducting a wide distribution
of inputs and decreasing prediction errors by considering previous experts’ prediction
information [17–20]. It can linearly and nonlinearly examine relationships among a dataset
by assessing multivariable sensitivity analyses (MSA), evaluate the sensivity of output to
the given inputs, indicate magnitudes, and rank variables based on their importance [20].
In this work, the BNN’s marginal model (MM) was used for the MSA assessments. In
the BNN-MM, inputs are ordered based on the size of their overall total effect importance
indices [21]. BNN can reduce the objective function (Equation (1)) for the traning step [22],
as follows:

Et = ∑N
i=1

(
yi − ŷt

i
)2

+ αWT
t Wt (1)
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where N is the number of samples in the training dataset, y is the target value, ŷ is the
predicted value by t-th, experts, and α is the parameter, which is between 0 and 1. Wt is
the weight vector of t-th neural network expert in the BNN.

2.2.2. Random Forest

As a tree-based statistical model, random forest (RF) was constructed and developed
by Breiman et al. (1993) [23]. A powerful AI machine learning (ML) model can provide
low-bias and low-variation outcomes, with highly accurate predictions [24–27]. In this
system, an estimated value generates according to the average of overall trees through
the bagging system; different bootstrap data L(θ) with size n would be selected from the
training set (L) with size N. Each tree “TL(θ)” would be related to the random vector θ,
which is given for the bagged samples from the main training set L. The final predictor “f ”
is the average over the forest (with y’η the estimated response for sample xη where K is the
size of the ensemble) [28–30], as follows:

y′η = f
(
Xη

)
=

1
K ∑K

K=1

(
TL(θk)

(
Xη

)K
1

)
(2)

2.2.3. Support Vector Regression

Support vector regression (SVR) has been developed based on the structural risk
minimization (SRM) principle from statistical learning theory. Regarding the SRM principle,
SVR can reduce the risk of overfitting in prediction and generate a compressive model by
taking the information of all outputs for the prediction [31–33]. SVR can transfer a complex
nonlinear regression problem to a linear regression problem in a high dimensional variable
space. In other words, a linear function f (SVR function) can be used to formulate the
nonlinear relationship between Xi and Yi, as follows:

f (x) = wϕ(x) + b (3)

where f(x) shows the predicted value, and the two parameters w ∈ <nh and b ∈ <must be
adjusted. For SRM, empirical risk Equation (4) can be considered where ε (ε-insensitive) is
a precision parameter representing the radius of the tube located around the regression
function [33,34].

minRe(w, ξ ∗, ξ) =
1
2
|w|2 + C

n

∑
i=1

(ξ ∗ + ξ) (4)

With the following constraints:{
yi − wϕ(xi)− b ≤ ε + ξi i = 1, 2, 3, . . . n
−yi + wϕ(xi) + b ≤ ε + ξi i = 1, 2, 3, . . . n

(5)

{
ξi
∗ ≥ 0 i = 1, 2, 3, . . . n

ξi ≥ 0 i = 1, 2, 3, . . . n

3. Results and Discussion
3.1. Variable Importance Measurement

For the variable importance measurement, BNN-MM considers the mean response of
the target for each predictor record. The mean is taken over all inputs for the calculation
of the importance indices. BNN-MM assessments among monitored variables in the
plant indicated that the mill outlet pressure had the highest effectiveness (rank) on the
PBMF prediction. There was a positive correlation between these two factors (Figure 2).
For the PAMF prediction, the ampere of the separator fan had the highest rank, and by
increasing its ampere, the pressure after the mill fan was decreased (a negative relationship)
(Figure 2). These relationships could be because fan capacity can limit the separator
fan capacity, and pulling more air can increase the separator capacity when the mill
separator was not running at its maximum speed [35]. Zachariades (2015) indicated that
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the differential pressure in the mill is proportional to the primary air fan, which was
produced the differential pressure [36].
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3.2. Prediction

The samples of records (1870) were randomly applied for the training stage from the
database, and the rest of the records (198) were used for the testing step. For constructing
the most accurate predictive BNN model, a trial and error practice was considered to obtain
the number of experts. The robust BNN model was generated by the five neural network
experts. The developed BNN model expert was a one-layer perceptron neural network
with four hidden neurons and a ‘tanh’ activation function. The back-propagation learning
algorithm was applied for the training of the experts. The BNN outcomes (Table 2) showed
that the developed CL by BNN could comprehensively predict both PAMF and PBMF
based on the plant’s monitored parameters. For evaluation purposes, precisely the same
databases that were used for constructing the CL-BNN were applied for the development
of RF and SVR modeling as typical ML methods. The results (Figure 3) demonstrated
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that BNN could provide higher accuracy for the PAMF and PBMF prediction than these
traditional ML methods. These outcomes highlighted the potential of CL for controlling,
sustaining, and estimating other essential variables within cement plants.

Table 2. Statistical indexes for the outcomes of the training step from different models.

PAMF PBMF

Model MAE RMSE MAE RMSE

BNN 0.43 0.60 0.77 1.06
SVR 0.45 0.76 0.98 1.46
RF 0.48 0.71 0.91 1.31
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4. Conclusions

As a virtual laboratory, the development of a conscious-laboratory can be an essential
step for maintaining and controlling an industrial plant. For the first time, this study
explored the relationships between operational variables and ventilation factors for an
industrial cement ball mill, and developed a conscious lab by BNN as a newly generated
AI model. Variable importance assessments indicated that the mill outlet pressure and
the separator fan’s ampere had the highest importance for predicting ventilation factors.
Assessing relationship magnitudes showed that operating variables might have reverse
effects on ventilation parameters; however, the mill outlet’s pressure positively correlates
with the ventilation factors. In a dry grinding system, the BNN results showed that
ventilation, as an efficient factor, could be accurately predicted through a conscious lab
procedure. BNN could accurately predict the measuring pressure before and after the mill
fan, with R2 = 0.77. A comparison between BNN outcomes and random forest/support
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vector regression, R2 < 0.70, approved this newly developed model’s accuracy. These
considerable outcomes indeed stressed the possibility of automatic maintenance through
cement plants’ operation, where the conscious lab principle showed its reliability for the
monitored data assessments.
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